If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+40p-3696=0
a = 1; b = 40; c = -3696;
Δ = b2-4ac
Δ = 402-4·1·(-3696)
Δ = 16384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16384}=128$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-128}{2*1}=\frac{-168}{2} =-84 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+128}{2*1}=\frac{88}{2} =44 $
| (x-3)(x-5)(x-6)(x-10)=24^2 | | -5-p=-3 | | 7*(x-4)=5*(x-2 | | 2x²+2x-5=0 | | 10=4-2a | | a2+7a-60=0 | | 3x+6=1x+16 | | x=3x3-x | | m2-20m-300=0 | | 2a(5-4)=5a-8 | | 6(z-3)=5(z+7 | | 7x-4=2(5x-8) | | 7x-8=5x-22 | | X^x=3125 | | -3x-6=2x+1 | | 11x-9=6x+7 | | (2.5)^2x+1=(2.5)^5 | | a2+a-380=0 | | z÷10+7=9 | | x2-2x-528=0 | | 5+2y=7y | | a÷3+2=13 | | c2-4c-320=0 | | 5q2+9q+2=0 | | 10+2x|3=4 | | 2(2x+3)=x-133 | | y2-9y+20=0 | | 6^x-3^(x+3)-2^(x+4)+432=0 | | 1/3x+x=6 | | 5w^2+3w-1=0 | | 2(8-6x)=-92 | | S^2+6s-4=0 |